
Parallel and Improved PageRank Algorithm for
GPU-CPU Collaborative Environment

Prasann Choudhari , Eikshith Baikampadi, Paresh Patil , Sanket Gadekar

Department of Computer Engineering,
Pimpri Chinchwad College of Engineering, Pune, India

Abstract—The internet is a huge collection of websites in the
order of 108 bytes. Around 90% of the world’s population uses
search engines for getting relevant information. According to
Wikipedia, more than 200 million Indians use the Internet
every day. Thus the correct data retrieval least time domain is
the most important task. Hence need of efficient and parallel
PageRanking algorithm. All the existing implementations are
cluster based and to process huge lists of data take awful lot of
time. The difficulty in cluster based approach is latency among
different nodes participating in the computation. Since
internet has large distributions of weblinks, collaboration of
partial results after processing is a major issue. Thus latency
factor overcomes the performance achievement of parallel
cluster computation. As complete list can be hosted on one
data server, PCI based communication mechanism can be
used as a solution in addition of high parallel computation
power with GPUs. So our approach aims at providing a
parallel solution to it.

Keywords- GPU - Graphics Processing Unit, CUDA -
Compute Unified Device Architecture, PCI - Peripheral
Component Interconnect, SPMV Sparse Matrix Vector, SDK –
Software Development Kit.

I. INTRODUCTION
We use the Internet to search for information on a daily

basis. We use search engines to find out the useful
information from the vast Internet. This is possible because
the search engines are using a heuristic called PageRank
[1]. It is nothing but a value to a web page that is assigned
by a PageRanking algorithm. This algorithm scans all
possible webpages and then calculates the rank accordingly
given by a formula. Search engines show results according
these ranks, which stand for the popularity of the page. The
lower is the rank, more popular the page is. Traditional
approaches use multi-CPU architecture and this is not a
very good choice due to the communication overhead and
the low processing power of CPU compared to GPU.
Hence, designing a PageRanking algorithm efficiently
modified for parallel GPU-CPU environment that achieves
higher accuracy and consumes lesser time to evaluate the
PageRank of a given webgraph. PageRank calculation is a
non-trivial task. There are many challenges we encounter
when calculating PageRank value of web pages. The first
difficulty is that the input data is extremely huge; therefore,
it requires a lot of computing effort. It is estimated that the
number of web pages on World Wide Web is over 40
billion. Even when the size of data we have is just a fraction
of that number (few billion or hundreds of million), it is still
not easy to compute efficiently. The second problem comes
from a characteristic of the Web: it is dynamic. This

characteristic is reflected in two aspects. First, the content
of web pages may be changed along the time. This leads to
the change of hyperlinks in the pages and therefore the
change of the Web’s structure. Moreover, the size of the
World Wide Web, which is determined by the number of
web page, increased rapidly with billions of web pages
being created every year. To make PageRank values always
up-to-date despite these changes, PageRank calculation
should to be carried out in as short a time period as possible.
This comes to the need of deploying PageRank to run on
high performance computing infrastructures such as
specialized hardware or clusters including computing nodes.

Designing a parallel algorithm for PageRank evaluation
can be very crucial when it comes to designing hardware
architecture to give maximum performance in low cost.
Hence a parallel algorithm can achieve great heights in
performance by harnessing the many cores available in a
GPU. By operating in multiple GPU architecture we can
process much larger chunks of webgraph and as a result
attain a better throughput. This is beneficial for search
engines and the CPU architecture have fewer loads and can
do better in other CPU based applications. The rest of the
paper is organized as follows. Section II gives the
background and review of PageRank concept. Section III
gives detailed description on previous work done on parallel
approaches towards PageRanking algorithms. Section IV
gives detailed description about our proposed model for
improved parallel algorithm for PageRank computation
followed by conclusion and references in section V and VI
respectively.

II. BACKGROUND

A. What is PageRank and how is it computed?
Search engines run a special program in order to assess

the PageRanks of websites. The program assigns a special
score to the websites which is an indication towards the
importance of the page. The overview of the idea is: A
webpage is marked as important if it is pointed towards by
other important webpages. To understand this thesis, we
assume that each hyperlink is a recommendation; thus, a
webpage which has more in-links or recommendations must
be an important webpage. If the recommendation is from
another important webpage, then it is considered to be more
valuable than recommendations from less important
webpages. Therefore, an important page is the page which
(1) has many in-links, (2) has in-links from other important
pages or (3) both. From that assumption, the original
formula of PageRank [2] is defined as:

Prasann Choudhari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2003-2005

www.ijcsit.com 2003

in which, r(Pi) is the PageRank of page Pi , B(Pi) is the set

of pages pointing to Pi and |Pj| is the number of outlines.
Since the PageRank of source pages Pj are still unknown,
the above formula is converted to an iterative formula
where the web page’s PageRank is calculated from other
PageRank of the previous iteration. Let rk +1(Pi) denote
PageRank of page Pi at iteration k+1 [1]. Then,

The initial PageRank values of all pages are assigned to 1/n
where n is the number of pages. The iterative process is
repeated until PageRank scores converge to the final stable
values. However, there is a problem with this definition of
PageRank. In practice, with the above initial values, some
pages will accumulate more and more PageRank after each
iteration and refuse to share to other pages. This problem is
possible because the web graph is not strongly connected
and there are many pages without any out-links in the
graph. This results in that there will be PageRank value
sinking to zero at the end of iterative process; hence, it
becomes hard to rank web pages using PageRank when
these values are mostly 0. To overcome this challenge, Brin
and Page introduce some adjustments: firstly, they replaced
nodes with out-degree zero (called dangling nodes) by
nodes linking to all other nodes; and secondly, they added a
damping factor [2] which influencing the random walks of
the random surfer process of the graph. Equation (2) can be
written as

Where α is the damping factor that descripts the

probability of a user follows hyperlinks in the web graph. In
the above equation. πk(T) which is row vector containing
PageRank scores of N web pages at the kth iteration. α is a
binary vector and its value is set to 1 if page is a dangling
node else it is set to 0.

B. Webgraph Representation

The algorithm to calculate PageRank needs information
related to webpages. This information is supplied to it by
providing a Web Graph. Web Graph is a graph containing
nodes representing webpages and directed edges to
represent corresponding in-links and out-links. Search
engines collect data from WWW by a program called Web
crawler (or Web spider) which works like an automatic
browser: it arrives at a web page, assesses hyperlinks in that
page and follows those links to jump to other pages. Web
crawlers create a copy of all visited page for later
processing by a search engine such as indexing, displaying
search results, etc. The Web graph is also constructed from
this data. This graph is very huge, hence we need to store
the data in an efficient way. Hence, usage of a special data
structure is necessary. This data structure is similar to
Binary Link Structure file [1] which contains the following
fields:

Figure 1: Binary Link Structure

• Source ID - It is a 4-byte integer serial number or the
index of the corresponding row tuple.

• Out Degree - It is the 4-byte integer number of out-
links of the webpage.

• Sequence of 4-byte integers representing a list of
Destination IDs.

III. PREVIOUS WORK DONE ON PARALLEL PAGERANK

COMPUTATION
There have been a few implementations of PageRank on

CPU based infrastructures, including PC cluster [2,3,4] or
P2P architectures [5]. These methods need many processors
connected together via network; therefore, a common
problem issued is that the communication overhead over the
computation. Existing implementation of PageRanking
algorithm using GPU consists of architectures mostly
focused on implementing the SPMV problem efficiently [6,
7, 8].
Another approach [1], comprises of an overview of
PageRanking algorithm implemented on CUDA platform
which addresses the drawbacks of huge number of nodes
and their representation. They have used linear vectors to
store the computed PageRank values and the nodes are
stored in a special data structure called as Binary Link
Structure [1]. This approach has been tested on not too-
large data sets. In the aforementioned paper [1], they have
used CUDA threads to achieve parallelism where each
CUDA thread takes one page-id and perform PageRank
computation for out-links pages pointed by that source page
sequentially. This implementation harnesses only a single
CUDA block which provides 1024 threads. The large
dataset is divided into chunks of 1024 tuples from the
Binary Link Structure [1] which are acted upon
simultaneously.

Figure 2: Parallelism using Threads

Prasann Choudhari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2003-2005

www.ijcsit.com 2004

The PageRank calculation was done iteratively in a loop
which halted when the convergence condition was satisfied
i.e. when the distance between two vectors πk and πk+1 was
less than a particular threshold value [1]. The distance
between two vectors is calculated by Chebyshev formula
[10], which states that distance between two vectors is the
maximum of the difference between corresponding
individual elements of the two vectors.

The work of finding the maximum of the individual
differences has complexity O(n) if using a sequential
algorithm that loop all elements of n-elements array, where
n is the number of nodes. The implementation in [1],
exploits GPU to find quickly the maximum value of an
array by applying scan algorithm that presented in [11]. The
idea of the algorithm is to build in parallel a balanced
binary tree using bottom-up approach. The two nodes at the
same level are compared with each other, the greater value
will be used to make new root of the tree. The process
repeated until only a single node, this node contains the
maximum value of the element in the array.

IV. OUR PROPOSED MODEL FOR IMPROVED

PARALLELISM
After detailed study of the PageRanking algorithms, we

have concluded that the PageRank formula, cannot be
altered anymore. Hence to achieve an improved parallel
algorithm, there are two key points which have scope for
optimization - Convergence condition and the efficient
memory coalescing and utilization of CUDA blocks and
threads.
A. Conditional Model for Convergence

For the implementation of convergence condition, instead
of using Chebyshev Distance formula to calculate the
maximum, which involves construction of a balanced
binary tree, we propose a simpler and efficient way by using
an overflow flag. The method includes finding the
difference between individual elements of the two vectors
πk and πk+1 . This operation is performed in just in O(1) on a
GPU. We maintain an overflow flag which is modified as
following.

difference :=
if (difference) then

flag := true
Now based on the status of the flag, we can determine if the
distance between two vectors exceeds the threshold,
completely eliminating the need to find out the maximum
difference. If flag is set to true, then we can say that the
distance exceeds threshold. If flag is not set to true at all,
then we can say that the distance hasn’t exceeded the
threshold and the PageRank values are now stable.

B. Improved Block-Thread Utilization
 In this approach, we have attempted to maximize the
number of pages whose pageranks are calculated
simultaneously. In CUDA, there are 1024 threads per block
and there are a maximum of 65535 such blocks.

We assign a block to each tuple in the Binary Link
Structure and Threads in that block will then calculate
pageranks of all the out-links IDs of that source ID
simultaneously. This gives us a higher level of parallelism
and better performance. Hence a minimum of 65535
pageranks are computed at any given instant (assuming all
tuples have at least one out-links). The previous
implementation provided a mere 1024 parallel
computations.

Figure 3: Improved Block-Thread utilization

V. CONCLUSION
In this paper, we have proposed an optimal parallel

PageRanking algorithm, by efficiently utilizing the
architectural benefits that CUDA provides. Clearly, our
proposed approach increases the performance in terms of
time taken to compute PageRank of a given dataset.

REFERENCES

[1] Nhat Tan Duong, Anh Tu Nguyen, Quang Anh Pham Nguyen, Huu-
Duc Nguyen, 2012, Parallel PageRank Computation using GPUs, in
SoICT 2012, Ha Long, Vietnam - ACM - 978-1-4503-1232-5.

[2] S. Brin and L.Page. 1998. The anatomy of a large-scale hypertextual
web search engine. In Proceedings of the 7th WWW Conference.

[3] A. Rungsawang and B. Manaskasemsak. 2004. Parallel PageRank
Computation on a Gigabit PC Cluster. In Proceedings of the 18th
International Conference on Advance Information Networking and
Application.

[4] A. Rungsawang and B. Manaskasemsak. 2003. PageRank
computation using PC cluster. In Proceedings of the 10th European
PVM/MPI User’s Group Meeting.

[5] A. Rungsawang and B. Manaskasemsak. 2004. An Efficient
Partition-Based Parallel PageRank Algorithm. In Proceedings of the
11th International Conference Parallel and Distributed Computing.

[6] Nathan Bell and Michael Garland. 2008. Efficient Sparse Matrix-
Vector Multiplication on CUDA. NVIDIA Technical Report.

[7] Xintian Yang, Srinivasan Parthasarathy, P. Sadayappan. 2011. Fast
Sparse Matrix-Vector Multiplication on GPUs: Implications for
Graph Mining. Proceedings of the LDB Endowment,Vol. 4, No. 4.
Seattle, Washington.

[8] Praveen K., Vamshi Krishna K., Anil Sri Harsha B., S.
Balasubramanian, P.K. Baruah. 2011. Cost Efficient PageRank
Computation using GPU. IEEE International Conference on High
Performance Computing (HiPC), Student Research Symposium.

[9] Tianji WU, Bo WANG, Yi SHAN, Feng YAN, Yu WANG and
Ningyi XU. 2010. Efficient PageRank and SpMV Computation on
AMD GPUs. 39th International Conference on Parallel Processing,
DOI 10.1109, p.81-89.

[10] Chebyshev distance. http://en.wikipedia.org/wiki/Chebyshev-distance
M. Harris. 2007. Parallel Prefix Sum (Scan) with CUDA. NVIDIA
Corporation.

Prasann Choudhari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2003-2005

www.ijcsit.com 2005

